2 Suatu matriks kuadrat In yang semua diagonal utamanya satu dan lainnya nol disebut. matriks satuan, yaitu I(2×2) 3. Jika ada suatu matriks A dan B sedemikian sehingga AB = BA = I maka A dikatakan. dapat dibalik (Invertible) dan B dikatakan invers dari A (A-1 = B) atau sebaliknya. 4. Invers suatu matriks adalah tunggal. 5.
Selain cara 17 langkah yang sudah saya jelaskan di OBE Kunci K, saya mempunyai penyelesaian invers matriks 4×4 dan SPL 4 variabel dengan cara 11, 9, 8, 7, dan 6 langkah penyelesaian. Semakin cepat langkahnya, semakin sulit rumus, perhitungan, dan nilai elemen matriksnya. Oleh karena itu, dengan berbagai pertimbangan hanya cara cepat invers matriks 4×4 dan SPL 4 variabel dalam 9 langkah versi pdf ini saja yang saya bagikan. Kunci Kunci OBE yaitu diagonal utama matriks yang berisi elemen a, f, k, dan p. Invers Matriks 4×4 Ada dua tipe pola penyelesaian invers matriks 4×4, yaitu Genap Invers 4× Langkah OBE Tambahkan matriks identitas disebelah kanan. Ubah elemen e, i , dan m menjadi nol. Ubah elemen j dan n menjadi nol. Ubah elemen d, h, dan l menjadi nol. Ubah elemen k menjadi satu. Ubah elemen c, g, dan o menjadi nol. Ubah elemen f dan p menjadi satu. Ubah elemen b menjadi nol. Ubah elemen a menjadi satu. Genap Invers 4× Langkah OBE Tambahkan matriks identitas disebelah kanan. Ubah elemen d, h , dan l menjadi nol. Ubah elemen c dan g menjadi nol. Ubah elemen e, i, dan m menjadi nol. Ubah elemen f menjadi satu. Ubah elemen b, j, dan n menjadi nol. Ubah elemen a dan k menjadi satu. Ubah elemen o menjadi nol. Ubah elemen p menjadi satu. Pola mana yang sebaiknya digunakan? Tergantung matriks yang akan dicari inversnya. Sebagian matriks mudah dicari dengan Genap Invers 4× sebagian lainnya dengan Genap Invers 4× Contoh Soal Contoh Tentukan invers matriks berikut ini! Matriks A kunci elemen kolom 1 yaitu 1 satu lebih mudah dihitung. Matriks B kunci elemen kolom 1 yaitu 2 dua memudahkan elemen e, i, dan m diubah jadi nol. Maka, penyelesaian menggunakan Genap Invers 4× Penyelesaian Tambahkan matriks identitas. Ubah elemen e, i, dan m menjadi nol menggunakan kunci elemen a. Ubah elemen j dan n menjadi nol menggunakan kunci elemen f. Ubah elemen d, h, dan l menjadi nol menggunakan kunci elemen p. Ubah elemen k menjadi satu dengan cara Ubah elemen c, g, dan o menjadi nol menggunakan kunci elemen k. Ubah elemen f dan p menjadi satu dengan cara Ubah elemen b menjadi nol menggunakan kunci elemen f. Ubah elemen a menjadi satu dengan cara Maka, invers matriks Sistem Persamaan Linear 4 Variabel Saya sudah menjelaskan SPL 4 Variabel dalam Eliminasi Gauss & Gauss Jordan 4×4. Namun, 17 langkah rasanya yang cukup panjang. Oleh karena itu, saya tulis cara cepatnya menggunakan Genap SPL 4× dan Genap SPL 4× berikut ini. Genap SPL 4× Genap SPL 4× Contoh Soal Contoh Tentukan nilai variabel dari sistem persamaan linear berikut! Dua contoh soal diatas akan diselesaikan dengan pola Genap Penyelesaian Ubah SPL menjadi matriks. Ubah elemen d, h, dan l menjadi nol menggunakan kunci elemen p. Ubah elemen c dan g menjadi nol menggunakan kunci elemen k. Ubah elemen e, i, dan m menjadi nol menggunakan kunci elemen a. Ubah elemen f menjadi satu dengan cara Ubah elemen b, j, dan n menjadi nol menggunakan kunci elemen f. Ubah elemen a dan k menjadi satu dengan cara Ubah elemen o menjadi nol menggunakan kunci elemen k. Ubah elemen p menjadi satu dengan cara Maka, C. D. Invers Matriks 4×4 OBE Kunci K > OBE Genap
1 Jumlah persamaan sama dengan jumlah variabel (Matriks bujur sangkar) Ada dua cara penyelesaian: - x=inv(A) * b - x=A\b (pembagian kiri matriks) Contoh : x 1 + x 2 - x 3 = 1 -2x 1 - 6x 2 + 4x 3 = -2 -x 1 - 3x 2 + 3x 3 =1 2. Terdapat lebih BANYAK persamaan dari pada variabel (kasus berlebihan) disebut penyelesaian kuadrat terkecil
Sistempersamaan linear 4 variabel adalah himpunan 4 persamaan yang memiliki 4 variabel. Jika kurang dari 4 persamaan tentunya persamaan memiliki tak terhingga penyelesaian, dan jika ada 5 persamaan atau lebih, bisa jadi tidak memiliki penyelesaian dan terjadi kontadiksi. Untuk meyelesaiakan sistem persamaan linear 4 variabel maka bentuk ini kita
Matriksdiagonal, matriks persegi yang semua elemennya nol, kecuali pada diagonal utamanya. Untuk meyelesaiakan sistem persamaan linear 4 variabel maka bentuk ini kita sederhanakan menjadi sistem persamaan linear 3 variabel (tentunya ada 3 persamaan), baru kemudian kita sederhanakan menjadi sistem persamaan linear 2 variabel.
. 475 108 127 138 134 499 411 355

persamaan linear 4 variabel matriks